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In this paper, the equilibrated type a posteriori error estimates based on flux reconstructions by local problems are introduced
to evaluate the discretization error in the finite element computation for both cases of A and Ω formulations. A comparison with
residual type error estimator, as well as the classical equilibrated error estimator based on the non-verification of constitutive laws
are carried out in an academic example. Our proposed estimators are shown to be more efficiency to the correspondent discretization
errors.
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I. INTRODUCTION

IN order to improve the quality of the numerical results of fi-
nite element computation in electromagnetic problems, it is

necessary to quantify the discretization error which is linked to
the mesh. A posteriori error estimates are widely developed in
magnetostatic problems to evaluate the discretization error [1],
[2]. Some comparisons have been done between different error
estimators [3], [4]. In the previous work, it is shown that,
the residual type estimator [2] which evaluates respectively
the equations in each element, the discontinuities of fields on
the interfaces of element, and the verification of the boundary
condition, can give a relative error distribution, but cannot give
a guaranteed bound for the global error. On the other hand,
the classical equilibrated estimator [1] which is based on the
non-verification of the constitutive laws, can give a guaranteed
bound for the sum of errors from two potential formulations,
but cannot give a correspondent error distributions to each
formulation. In this work, we propose an improved equilibrated
error estimator based on the flux reconstruction technical on
local problem [5], [6] for both potential formulations, which
can be provided reliable and efficiency. Moreover, it take
the advantages of both residual one and classical equilibrated
one, i.e. for each formulation, proposed estimator can give a
global guaranteed error bound, as well as a good local error
distribution.

II. NUMERICAL MODEL AND ERROR ESTIMATIONS

Given a divergence-free applied current density Js, the
magnetostatic problem reads:

divB = 0; rotH = Js; B = µH, (1)

where B and H represent respectively the magnetic flux
density and magnetic field, the µ stands for the magnetic
permeability. Two following potential formulations can be
obtained by using the vector potential A s.t. B = rotA and the
scalar potential Ω s.t. H = Hs−gradΩ, where rotHs = Js:

rot(
1

µ
rotA) = Js and div(µgradΩ) = div(µHs). (2)

Let us denote Bh and Hh the numerical solutions from each
formulations. We define respectively the discretization error in
A and Ω formulation on the domain D by

‖µ−1/2(B−Bh)‖D and ‖µ1/2(H−Hh)‖D. (3)

Our proposed equilibrated estimators consist in finding an
equilibrated flux reconstruction σB for A formulation (or σH
for Ω formulation) in Raviart–Thomas–Nédélec subspace over
the mesh Th. With this flux reconstruction σB (or σH), we
can establishes the estimator verifying the reliability and local
efficiency, i.e.

‖µ−1/2(B−Bh)‖2D≤
∑
T∈Th

‖µ−1/2(σB −Bh)‖2T .

and

‖µ−1/2(σB −Bh)‖T≤ ‖µ−1/2(B−Bh)‖patch(T )+ηosc.

where ηosc is the local data oscillation, and the notation
patch(T ) is the neighborhood of the element T (same result
for σH case). Local problems should be resolved to obtain
the flux reconstruction σB or σH, see [5] and [6] for details. It
should be noted that, different from the residual type estimator,
there is no unknown constant C here.
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Fig. 1. Errors and equilibrated estimators on uniformly refined meshes.



III. NUMERICAL APPLICATION

It has been discussed in our previous work [3], the residual
type estimator can evaluate the local error distribution for
two potential formulations, while the classical equilibrated one
cannot separate the individual information of each formulation.
However, the classical equilibrated one can give a guaran-
teed bound for the sum of two formulations. To show the
improvement from our proposed estimator, we consider the
same the academic problem (Rubinacci cube) with an analytic
solution [7]. Five successive levels of refined uniform meshes
are considered.
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Fig. 2. Spatial distributions of the errors and estimators.

Fig. 1 displays the global errors and the various equilibrated
estimators as a function of the number of mesh elements. It can
be seen that all the estimators have the same convergence order
than the errors. Moreover, similar as the classical equilibrated
estimator which can give a sharp error bound (indeed almost
coincides with the total error), our proposed equilibrated es-
timators (both in A and in Ω) yield almost indistinguishable
value for the discretization error of each formulation (error in
A, error in Ω).

In Fig. 2, the spatial distribution of different errors and of
estimators are shown. Fig. 2(a) and Fig. 2(b) are respectively
the exact error in formulation A and Ω. Fig. 2(c) and Fig. 2(d)
are our proposed equilibrated estimator for each correspondent
formulation. A good match between (a) and (c), (b) and (d)
can be observed. Fig. 2(e) and Fig. 2(f) are the residual type
estimators for each formulation, a relative match between (a)
and (e), (b) and (f) can be found, but the value of estimators
does not have any senses. At last, Fig. 2(g) and Fig. 2(h)
are respectively the sum of total error by two formulations
and the classical equilibrated estimator. As we explained in
our previous work [3], the classical one can give a good
accordance for the total error distribution, but cannot separate
the information for each formulation.

IV. CONCLUSION

The equilibrated type error estimators based on the flux
reconstruction have been developed for both A and Ω potential
formulations in magnetostatic problems. A comparison with the
residual type, as well as the classical equilibrated type has been
carried out with numerical examples. For each formulation,
similar to the residual type, our proposed estimators can give
good accordance with the correspondent error distribution.
Furthermore, similar to the classical equilibrated type, we can
also give a guaranteed global bound for each formulations. In
addition, in order to carry out our equilibrated estimator, we do
not need the full resolution of two formulations as the classical
equilibrated one, all the estimators can be computed based on
the flux reconstruction on local problems. Our estimators are
shown to be more efficiency to evaluate the discretization error.
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